
Lecture 03:
Transformer and Large Model

2

Notes
● Quiz 1 score can be found in Brightspace
● Course website: https://www.saiqianzhang.com/COURSE/
● I use Brightspace to post announcements and grades
● I provide an online zoom meeting option for people interested in

auditing the class. However, enrolled students are required to attend in
person unless special condition.

● Discussion groups has been created in the Brightspace
● Course email: efficientaiaccelerator@gmail.com

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/93825201038?pwd=YScgBkdxIBLmnLpvkyXXxqCXRgy98T.1&jst=2

3

Recap
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ VGG
■ ResNet
■ MobileNet
■ ShuffleNet
■ SqueezeNet
■ DenseNet
■ EfficientNet
■ ConvNext
■ ShiftNet

○ CNN architectures for other vision tasks
■ Image Segmentation, Object Detection

4

Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning

5

Transformers
● Proposed in ”Attention Is All You Need“ in 2017
● The vanilla Transformer is a

sequence-to-sequence model and consists of
transformer blocks.

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

6

Transformers

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

+

Layernorm

GeLU

+

linear

linear

Self attention block
(SA)

LayerNorm

Y

Y

Feed forward block
(FFN)

Z

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

● Each transformer block includes a
self-attention layer and a feedforward layer.

Self-attention
layer (SA)

X

Embedding

Positional
encoding

Tr
an

sf
or

m
er

 b
lo

ck

7

Transformers: Transformer Block

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

Embedding

Positional
encoding

Tr
an

sf
or

m
er

 b
lo

ck

Linear

8

Transformers

B

L

E

● The input contains three dimensions:
○ B: batch
○ L: token length
○ E: embeddings

● The amount of computation is closely related to the token length L.
● Longer sequences are disproportionately expensive because attention is quadratic to the sequence

length.

Input

9

Self-Attention Block

linear linear linear

Q K V

QKT

x

linear

Softmax

Scale

+

Normalization

Y

● The input x is first normalized, then the first step in calculating
self-attention is to create three vectors from the input x’, denoted
as: Query (Q), Key (K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E) (BLE2)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

x

x’ x’ x’

10

Example
128

“I love AI”

linear linear linear

3

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

11

Self-Attention Block
● Given input x, the first step in calculating self-attention is to create

three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B, E✖L) → (B, L✖L) (BL2E)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

QKT

x

linear

Softmax

Scale

+

Y

Normalization

12

Example

Q K
(3,128) (3,128)

3
3

QKTStep 2

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

13

Self-Attention Block
● Given input x, the first step in calculating self-attention is to create

three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT

14

Example

Q K
(3,128) (3,128)

3
3

QKT

Scale and
softmax3

3
QKT 3

3

Step 2

Step 3

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

15

Self-Attention Block
● Given input x, the first step in calculating self-attention is to create

three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

16

Self-Attention Block
● Given input x, the first step in calculating self-attention is to create

three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E) (BL2E)

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT

17

Example

Q K
(3,128) (3,128)

3
3

QKT

Scale and
softmax3

3
QKT 3

3

3
3

3
128

V
3

128

Step 2

Step 3

Step 4

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

128
“I love AI” 3

18

Self-Attention Block
● Given input x, the first step in calculating self-attention is to create

three vectors from each of the input x’, denoted as: Query (Q), Key
(K), Value (V).

○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
● The second step in calculating self-attention. This will compute the

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) → (B, L✖L)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) → (B, L✖L)

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V
○ (B, L✖L) ✖ (B, L✖E) → (B, L✖E)

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT

19

Example

Q K
(3,128) (3,128)

3
3

QKT

Scale and
softmax3

3
QKT 3

3

3
3

3
128

V
3

128

linear

(3,128)

(3,128)

Step 2

Step 3

Step 4

Step 5

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

20

Multi-headed Attention
● Q, K, V tensors are broken into multiple components along the embedding

dimension.
○ (B,L,E) ✖ (E✖E) → (B✖L✖E)
○ (B,L,E) → (B, M, L, E/M) → (B, M , L, D) , where D=E/M

● All the following operations can be performed independently over each head M.
○ QK丅→(B, M, L✖D) ✖ (B, M, D✖L) → (B, M, L✖L)
○ Softmax(QK丅) → (B, M, L✖L)
○ Softmax(QK丅) ✖ V → (B, M, L✖L) ✖ (B, M, L✖D) → (B, M, L✖D) → (B✖L✖E)

B

E

L

E/2

E/2

B

L

21

Example

Q1 K1
(3,64)

3
3

Q1K1T

Scale and
softmax3

3
3

3

3
3

3
64

3
64

linear

(3
,128)

(3,128)

Step 2

Step 3

Step 4

Step 5

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

(3,64)

3
3

Q2 K2
(3,64) (3,64)

Scale and
softmax3

3
3

3

3
3

3
64

3
64

V1

V2

Q1 Q2 K1 K2 V1 V2

Q2K2T

Q1K1T

Q2K2T

22

Multi-headed Attention
● Why we need multiple heads?

○ Multiple attention heads in transformers are used to enhance the
expressive power and modeling capabilities of the network.

○ By using multiple attention heads, transformers can capture
different types of dependencies and relationships between words
or elements in a sequence.

○ Having multiple heads allows the model to perform attention
calculations in parallel, which can improve computational
efficiency.

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." Advances in neural
information processing systems 32 (2019).

23

Feed Forward Layer

GeLU

+

linear

linear

LayerNorm

Y

Z
● The two linear layers are big:

○ (Ex4E) and (4ExE), E can be large (e.g., 4096)
○ This is expensive to implement.

● GeLU:
○

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units
(gelus)." arXiv preprint arXiv:1606.08415 (2016).

24

Example

(3,128)

(3,512)

Step 6 Linear 1 GeLU

(3,512)

(3,512)

Step 7

(3,512)

(3,128)

Step 8 Linear 2

GeLU

+

linear

linear

LayerNorm

Y

Z 128
“I love AI” 3

25

Layer Normalization

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450
(2016).

L

E

L

E

…

● LayerNorm is applied on each input sample.
● Both α and β have a length of E.

X

μ0,ઠ0

μ1,ઠ1

μL-1,ઠL-1

For each e∈E

X’

Step 1 Step 2

For each r∈L

…

26

Layer Normalization

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450
(2016).

● Layer Norm does not store the running mean and running variance, so during the
inference time, the mean and variance need to be computed.

L

E

…

For each e∈E

X’

Step 2

L

E

X

μ0,ઠ0

μ1,ઠ1

μL-1,ઠL-1

Step 1

For each r∈L

27

RMS Normalization

● The experiments demonstrate RMSNorm achieves similar and even better results
than LayerNorm.

L

E

L

E

…
X

For each e∈E

X’

Step 1 Step 2

Zhang, Biao, and Rico Sennrich. "Root mean square layer normalization." Advances in Neural Information Processing
Systems 32 (2019).

For each r∈L
L

28

Transpose & Reshape

(B, M, L, E/M)(B, L, E)

Reshaping operation

(B, E, L)(B, L, E)

Transpose operation

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head
pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.

29

Transformers: Word Embedding

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

Embedding

Positional
encoding

Tr
an

sf
or

m
er

 b
lo

ck

Linear

30

“I love machine learning”

Mikolov, Tomas. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

● For each word, we can convert them into a one-hot vector.
● We use the embedding layer to encode these one-hot vectors, which acts like a

trainable lookup table.
● Dictionary: {are, is, machine, good, awesome, learning, love, ….}

000100000 nn.embedding
One hot vector

Vocabulary size = 10

Vector of
(1, 4096)

P
ositional

encoding

W
ord

em
bedding

One hot
vector

Input to
transformer

blocks

Transformers: Word Embedding

31

Transformers: Positional Encoding

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

Embedding

Positional
encoding

Tr
an

sf
or

m
er

 b
lo

ck

Linear

32

● One thing that’s missing from the model as we have described it so far is a way to account for the order of
the words in the input sequence.

● Transformer adds a vector to each input embedding. These vectors follow a specific pattern that the model
learns, which helps it determine the position of each word.

● pos is the positional of the token, i is the index of the
embedding.

Transformers: Positional Encoding

33

Case Study: BERT
● Bidirectional Encoder Representations from Transformers.
● BERT is designed to understand the text by considering both the words before and after it.
● BERT consists of transformer encoders and takes the entire sentence as the input.
● BERT can not generate new text.

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).

34

Case Study: BERT

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).

● Use the encoder’s output embeddings as input features for downstream tasks.
● Represent a sentence as a vector for semantic similarity, clustering, or search.
● The pre-trained BERT model can be finetuned with just one additional output layer to create

state-of-the-art models for a wide range of tasks.

35

BERT
● A [CLS] token is inserted at the start of every sequence, and the two sentences in the

sequence are separated by a [SEP] token.
● The final hidden state corresponding to this token is used as the aggregate sequence

representation for classification tasks.
● In addition to the positional information, BERT contains a segment embeddings to

differentiate the sentences.

36

BERT Pretraining
● BERT is pretrained using two unsupervised tasks:

○ Masked Language Modeling (MLM)
■ We simply mask some percentage of the input tokens at random, and then

predict those masked tokens.
○ Next Sentence Prediction (NSP)

■ Given two sentences, A and B, predict whether B is A’s following sentence.

“New York University is a great school.” “New York University is a great school.”

Bert

“University”

37

Linear

Downstream Tasks
● For text classification task, Bert will return a binary

output.
○ Single sentence task (SST-2): The task is to predict the

sentiment of a given sentence.
● The input may contain a single sentence, or a pair of

sentences.
○ Similarity and Paraphrase tasks (MRPC): Is the second

sentence a paraphrase of the first sentence.

...

(128, 768)

BERT

Output

Input

Block 1

Block 2

Block 12
Softmax

38

BERT Performance

● BERT can achieve better performance over GLUE datasets than GPT-1.

39

Efficient Self-Attention Design

Original Strided Fixed

Sparse Transformer (2019)

Beltagy, Iz, Matthew E. Peters, and Arman Cohan. "Longformer: The long-document transformer." arXiv preprint
arXiv:2004.05150 (2020).

Longformer (2020)

Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv preprint arXiv:1904.10509 (2019).

40

Efficient Self-Attention Design

Q K
(3,128) (3,128)

3
3

QKT

Scale and
softmax3

3
QKT 3

3

3
3

3
128

V
3

128

Step 2

Step 3

Step 4

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1

3
3

Pruning

41

Linear

Token Merging

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).

“This show is great”

“This show is great”

Pooling layer will
reduce the number
of tokens.

● We can reduce the number of tokens by merging them together.

Feedforward
layer (FFN)

Block 2

...

Block 1

Block N

Self-attention
layer (SA)

Embedding

Positional
encoding

Tr
an

sf
or

m
er

 b
lo

ck

Pooling

42

Token Merging

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).

Max
pooling zi =

xi if (|xi| >= |yi|)
yi otherwisex y z

Average
poolingx

y z
zi = (xi + yi)/2

Interleaved
mergingx

y z
zi =

xi i is odd

yi otherwise

● x,y are two token
vectors with length of E

43

Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning

44

Vision Transformer
● Transformer architecture can also be applied over the computer vision tasks.

224

224

 Conv 2D

3

Reshape
(B, 768, 14, 14)

(B, 196, 768)

Concat

(B, 197, 768)

(B, 197, 768)

+(B, 197, 768)
nn.param

layernorm

take [:, 0]

(B, 197, 768)

(B, 768)

(B, 1000)

(B, 197, 768)

Linear

(B, 197, 768)

Block

Block

(B, 197, 768)

…
(part 1) (part 2) (part 3)

45

Vision Transformer
● A special placeholder is introduced to aggregate global information about the whole image.

224

224

 Conv 2D

3

Reshape
(B, 768, 14, 14)

(B, 196, 768)

Concat

(B, 197, 768)

(B, 197, 768)

+(B, 197, 768)
nn.param

(part 1)

...

FiltersInput Feature
maps

Conv
Conv

Conv

16
16

3

224

224

3

768

...

Output Feature
maps

14

768

14

(B, 1, 768)
Special token

Padding = 0, stride = 16

46

Vision Transformer
● Transformer architecture can also be applied over the computer vision tasks.

...

FiltersInput Feature
maps

Conv
Conv

Conv

16
16

3

224

224

3

768

...

Output Feature
maps

14

768

14

Padding = 0, stride = 16
768

196

16
16

224

224

16
16

…

47

Vision Transformer
● An image C×H×W is divided into patches of C×P×P. P is 16✖16 in the previous example.
● They are then flattened and linearly projected to E (e.g., 768) dimensions for a sequence of (H/P) × (W/P)

tokens.

Dosovitskiy, Alexey. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint
arXiv:2010.11929 (2020).

● A classification
[CLS] token is
inserted at the start
of the tokens.

768

196

1

48

Vision Transformer

ResNet-50
ResNet-50

23M

49

Vision Transformer
● Accuracy increases as the training

dataset grow.
● ResNet 50 can achieves an accuracy

between 75-80% on ImageNet.
● ViT does not strike an efficient

balance between parameter count
and accuracy when dataset is small.

50

Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning

51

Large Language Models (LLMs)

52

Transformers as a Generative AI Tool

Transformer

“Where is new york
university?”

Processing Transformer

“New”

Transformer

“Where is
new york

university?”

“York”

“Where is
new york

university?”

Generating

Step 1: Prefilling Step 2: Decoding

53

Decoder 12

Decoder 1

Decoder 2

Decoder 3

…

FFN

SA

LLM

ML

LLM LLM

is

LLM

awesome <EOS>

awesomeML is<BOS>
Round 1 Round 2 Round 3 Round 4

● Each token is generated in an autoregressive manner.

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.

Transformers as a Generative AI Tool

54

FFN

Decoder

Decoder

Linear &
Softmax

Embedding

Normalization

Normalization

SA

Input
linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

● We need to buffer the v and k for later usage.

Transformers as a Generative AI Tool

55

GPT-2: Prefilling

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”
● During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the

KV vectors into the memory.

ki,j Key vector for ith token in jth layer

vi,j Value vector for ith token in jth layer

(1✕E)

(1✕E
)

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2

KV cache

56

GPT-2: Decoding

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”

KV cache

● During the decoding stage, LLM generates the responses in an autoregressive way.

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2
Decoder

Decoder

Linear &
Softmax

Embedding

I

Round 1

KV cache

I

“How are you”

57

GPT-2: Decoding

Decoder

Decoder

Linear &
Softmax

Embedding

am

Round 1

KV cache

I

“How are you I”

am

Decoder

Decoder

Linear &
Softmax

Embedding

doing

Round 2

KV cache

I

“How are you I am”

am
doing

Decoder

Decoder

Linear &
Softmax

Embedding

well

Round 3

KV cache

I

“How are you I am doing”

am
doing
well

58

GPT-2: Decoding

● We can simply select the token with the highest score. But better results are achieved if
the model considers other words as well. So a better strategy is to sample a word from
the entire list using the score as the probability of selecting that word.

Decoder

Decoder

Linear &
Softmax

Embedding

good

KV cache

I

“How are you I am doing”

am
doing
good

Decoder

Decoder

Linear &
Softmax

Embedding

well

KV cache

I

“How are you I am doing”

am
doing
well

59

Why KV Cache Saves Computation?

● During the decoding phase, new tokens are continuously generated and must be
processed using the buffered K and V vectors to generate subsequent tokens.

● Without a KV cache, all previous K and V vectors must be recomputed, resulting in
significant computational overhead.

Q

E
1

KT

L-1 1

✖

q

L

A L,l

L-
1

L AE
L

kl kL V
1

✖ 1
L-1

y

vL

E
vl

E

L

60

Why KV Cache Saves Computation?

WQ

qL vLk L

● Given the input, the qL, kL, vL are first computed by passing through the
linear layers.

● After that, the kl, vl vectors (l=1,...,L-1) are also loaded from the memory.

WK WV

x

61

Why KV Cache Saves Computation?

Q

E
1

KT

L-1 1

✖

q

L

A L,1

L-
1

L AE

L

k1 kL

● K and V are loaded from the memory, the q vector of the current token (qL) is multiplied
with the each of the key vector ki, (i=1…L) to produce the result AL,i

62

Why KV Cache Saves Computation?

Q

E
1

KT

L-1 1

✖

q

L

A L,2

L-
1

L AE

L

k2 kL

● K and V are loaded from the memory, the q vector of the current token (qL) is multiplied
with the each of the key vector ki, (i=1…L) to produce the result AL,i

63

Why KV Cache Saves Computation?

Q

E
1

KT

L-1 1

✖

q

L

A L,L

L-
1

L AE

L

kL

● K and V are loaded from the memory, the q vector of the current token (qL) is multiplied
with the each of the key vector ki, (i=1…L) to produce the result AL,i

64

Why KV Cache Saves Computation?

L

A L,1

L A

● Afterwards, the computed AL,i (i=1…L) will then passed to softmax function.
● Then each element of AL will then multiplied with vi (i=1…L) and elementwise sum together.

V
1

✖ 1

L-1

y

vL

E
v1

E

L
+

L

L A

L

L A
softmax

65

Why KV Cache Saves Computation?

L

A L,2

L A

● Afterwards, the computed AL,i (i=1…L) will then passed to softmax function
● Then each element of AL will then multiplied with vi (i=1…L) and elementwise sum together.

V
1

✖ 1

L-1

y

vL

E
v2

E

L
+

66

Why KV Cache Saves Computation?

L

A L,L

L A V
1

✖ 1

L-1

y

vL

E

E

L

● Afterwards, the computed AL,i (i=1…L) will then passed to softmax function
● Then each element of AL will then multiplied with vi (i=1…L) and elementwise sum together.

+

67

Deepseek V3

Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437 (2024).

68

LLaMA
● LLaMA has a similar architecture as

GPT-2, with some minor differences:
○ RMSNorm is used to replace

LayerNorm
○ SwiGLU
○ MLPs with gating

Touvron, Hugo, et al. "Llama: Open and efficient foundation language models."
arXiv preprint arXiv:2302.13971 (2023).

69

MLPs with Gating

Liu, Hanxiao, et al. "Pay attention to mlps." Advances in neural information processing systems 34 (2021): 9204-9215.

● A lot of LLM models applies gated feed-forward network to replace the conventional FFN in the
transformer.

70

How LLM is Trained?
● The loss function consists of two parts:

“A newspaper article should contain these five main components: a headline, a byline, a lead/lede
paragraph, an explanation, and any other additional information.”

A newspaper article should contain these five main xxx “components”

A newspaper article should xxx these five main components: a
headline, a byline, a lead/lede paragraph, an explanation, and
any other additional information.

“contain”

(GPT)

(BERT)

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).

71

How LLM is Trained?

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).

72

Vision Language Model

Im
ageTe

xt “Describe
the image”

Visual
Encoder

Embedding
Projection

Language
model

“An image of two
golden retrievers”

● A Vision-Language Model (VLM) is an large model
that jointly processes from visual data (e.g., images,
video) and textual data to understand, align, and
generate multimodal content.

73

LLaVA

P
rojection
N

etw
ork

✕24

S
elf-A

ttention

Feedforw
ard

N
etw

ork

CLIP

Embedding

Image

Text S
elf-A

ttention

Feedforw
ard

N
etw

ork

✕40

Fusion ● In Llava, the visual encoder takes
the input images and produced
the visual embeddings.

● The visual embeddings and
textual embeddings are
concatenated, which is then
forwarded to the fusion model.

Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2023): 34892-34916.

74

Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning for visual model

75

Self-Supervised Learning
● Self-Supervised Learning (SSL) is a paradigm that leverages intrinsic structures within

unlabeled data to create pretext tasks, enabling models to learn meaningful
representations that can be fine-tuned for downstream applications.

Backbone

“Dog”
Weight
update

Backbone

“Cat”

Backbone …
Head Head Head

Ta
sk

 1
 (c

la
ss

ifi
ca

tio
n)

Ta
sk

 2
 (S

eg
m

en
ta

tio
n)

76

Self-Supervised Learning
● Self-Supervised Learning (SSL) is a paradigm that leverages intrinsic structures within

unlabeled data to create pretext tasks, enabling models to learn meaningful
representations that can be fine-tuned for downstream applications.

BackboneWeight
Pretraining Backbone

“Cat”

Backbone

Ta
sk

 1
 (c

la
ss

ifi
ca

tio
n)

…
Head Head

(a) (b)

Ta
sk

 2
 (S

eg
m

en
ta

tio
n)

77

Popular SSL Methods: Contrastive Learning
● Contrastive Learning is a framework in which models learn meaningful representations by

contrasting positive pairs (similar data points) with negative pairs (dissimilar data points),
encouraging the embedding space to capture semantic similarities and differences.

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on
machine learning. PMLR, 2020.

78

Popular SSL Methods: Contrastive Learning

● The current augmentation approaches adopted by the AI community including random crop (with flip and
resize), color distortion, and Gaussian blur.

79

Momentum Contrast SSL (MoCo)

He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020.

● In the training process, only query encoder is updated, momentum encoder doesn’t change.

● Only the encoder is updated.

80

Knowledge Distillation with No Labels (DINO)

DINO (2021)

● During the backpropagation, only the student DNN is updated.
● The teacher updates its weight periodically using the following formula:

81

Masked AutoEncoder (MAE)
● The input image is masked, the

unmasked image patches will be
sent to the encoder.

● The decoder will infer the
masked portion of the image.

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.

82

Self-Supervised Learning: Masked Autoencoder

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.

83

JEPA

224 x 224 x 3 224 x 224 x 3

Context encoder

224 x 224 x 3

Target encoder

Decoder

E
M

A

Loss

Layer
Norm

Target
masking

C
ontext

m
asking

rehape

rehape

ViT

ViT

Assran, Mahmoud, et al. "Self-supervised learning from images with a joint-embedding predictive architecture."
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

