
Lecture 03: 
Transformer and Large Model
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Notes
● Quiz 1 score can be found in Brightspace
● Course website: https://www.saiqianzhang.com/COURSE/
● I use Brightspace to post announcements and grades
● I provide an online zoom meeting option for people interested in 

auditing the class. However, enrolled students are required to attend in 
person unless special condition.

● Discussion groups has been created in the Brightspace
● Course email: efficientaiaccelerator@gmail.com

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/93825201038?pwd=YScgBkdxIBLmnLpvkyXXxqCXRgy98T.1&jst=2
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Recap
● Convolutional Neural Network

○ Basic building blocks
○ Popular CNN architectures

■ VGG
■ ResNet
■ MobileNet
■ ShuffleNet
■ SqueezeNet
■ DenseNet
■ EfficientNet
■ ConvNext
■ ShiftNet

○ CNN architectures for other vision tasks
■ Image Segmentation, Object Detection
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Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning
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Transformers
● Proposed in ”Attention Is All You Need“ in 2017
● The vanilla Transformer is a 

sequence-to-sequence model and consists of 
transformer blocks.

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
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Transformers
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Transformers: Transformer Block
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Transformers

B

L

E

● The input contains three dimensions:
○ B: batch
○ L: token length
○ E: embeddings

● The amount of computation is closely related to the token length L.
● Longer sequences are disproportionately expensive because attention is quadratic to the sequence 

length.

Input



9

Self-Attention Block

linear linear linear

Q K V

QKT

x

linear

Softmax

Scale

+

Normalization

Y

● The input x is first normalized, then the first step in calculating 
self-attention is to create three vectors from the input x’, denoted 
as: Query (Q), Key (K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E)  (BLE2)
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.

x

x’ x’ x’
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Example
128

“I love AI” 

linear linear linear

3

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1
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Self-Attention Block
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B, E✖L) →  (B, L✖L)  (BL2E)

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

QKT

x

linear

Softmax

Scale

+

Y

Normalization
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Example

Q K
(3,128) (3,128)

3
3

QKTStep 2

128
“I love AI” 3

linear linear linear

Q K V
(3,128) (3,128) (3,128)

(3,128)

Step 1
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Self-Attention Block
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x

linear

+

Y

Normalization

Softmax

Scale

QKT
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Example

Q K
(3,128) (3,128)

3
3

QKT
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3
QKT 3

3
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Step 3

128
“I love AI” 3

linear linear linear

Q K V
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Step 1
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Self-Attention Block
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L)  

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.
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Self-Attention Block
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L) ✖ (B, L✖E) →  (B, L✖E)  (BL2E)

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V

x
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+

Y

Normalization

Softmax

Scale

QKT
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Example

Q K
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3
QKT 3

3

3
3

3
128

V
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Step 2
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Step 4

linear linear linear

Q K V
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Step 1

128
“I love AI” 3
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Self-Attention Block
● Given input x, the first step in calculating self-attention is to create 

three vectors from each of the input x’, denoted as: Query (Q), Key 
(K), Value (V).

○ (B,L,E) ✖ (E✖E) →  (B✖L✖E) 
● The second step in calculating self-attention. This will compute the 

attention score between each pair of input tokens.
○ QK丅→(B, L✖E) ✖ (B,E✖L) →  (B, L✖L) 

● Scale and normalize the score using softmax.
○ Softmax(QK丅) →  (B, L✖L) 

● Multiply each value vector by the softmax score.
○ Softmax(QK丅) ✖ V 
○ (B, L✖L)  ✖ (B, L✖E) →  (B, L✖E) 

● Pass the result to the linear layer, sum with the input.

linear linear linear

Q K V
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Example
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Multi-headed Attention
● Q, K, V tensors are broken into multiple components along the embedding 

dimension.
○ (B,L,E) ✖ (E✖E) →  (B✖L✖E)
○ (B,L,E) →  (B, M, L, E/M)  → (B, M , L, D) , where D=E/M

● All the following operations can be performed independently over each head M.
○ QK丅→(B, M, L✖D) ✖ (B, M, D✖L) →  (B, M, L✖L) 
○ Softmax(QK丅) →  (B, M, L✖L) 
○ Softmax(QK丅) ✖ V → (B, M, L✖L) ✖ (B, M, L✖D) → (B, M, L✖D) → (B✖L✖E) 

B

E

L

E/2

E/2

B

L
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Example
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Multi-headed Attention
● Why we need multiple heads?

○ Multiple attention heads in transformers are used to enhance the 
expressive power and modeling capabilities of the network. 

○ By using multiple attention heads, transformers can capture 
different types of dependencies and relationships between words 
or elements in a sequence.

○ Having multiple heads allows the model to perform attention 
calculations in parallel, which can improve computational 
efficiency.

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." Advances in neural 
information processing systems 32 (2019).
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Feed Forward Layer

GeLU

+

linear

linear

LayerNorm

Y

Z
● The two linear layers are big:

○ (Ex4E) and (4ExE), E can be large (e.g., 4096)
○ This is expensive to implement.

● GeLU:
○

 

Hendrycks, Dan, and Kevin Gimpel. "Gaussian error linear units 
(gelus)." arXiv preprint arXiv:1606.08415 (2016).
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Example

(3,128)

(3,512)

Step 6 Linear 1 GeLU

(3,512)

(3,512)

Step 7
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Z 128
“I love AI” 3
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Layer Normalization

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 
(2016).

L

E

L

E

…

● LayerNorm is applied on each input sample.
● Both α and β have a length of E.

X

μ0,ઠ0

μ1,ઠ1

μL-1,ઠL-1

For each e∈E

X’

Step 1 Step 2

For each r∈L

…
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Layer Normalization

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 
(2016).

● Layer Norm does not store the running mean and running variance, so during the 
inference time, the mean and variance need to be computed.

L

E

…

For each e∈E

X’

Step 2

L

E

X

μ0,ઠ0

μ1,ઠ1

μL-1,ઠL-1

Step 1

For each r∈L
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RMS Normalization

● The experiments demonstrate RMSNorm achieves similar and even better results 
than LayerNorm.

L

E

L

E

…
X

For each e∈E

X’

Step 1 Step 2

Zhang, Biao, and Rico Sennrich. "Root mean square layer normalization." Advances in Neural Information Processing 
Systems 32 (2019).

For each r∈L
L
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Transpose & Reshape

(B, M, L, E/M)(B, L, E)

Reshaping operation

(B, E, L)(B, L, E)

Transpose operation

Wang, Hanrui, Zhekai Zhang, and Song Han. "Spatten: Efficient sparse attention architecture with cascade token and head 
pruning." 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2021.
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Transformers: Word Embedding
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“I love machine learning”

Mikolov, Tomas. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

● For each word, we can convert them into a one-hot vector. 
● We use the embedding layer to encode these one-hot vectors, which acts like a 

trainable lookup table.
● Dictionary: {are, is, machine, good, awesome, learning, love, ….}

000100000 nn.embedding
One hot vector

Vocabulary size = 10

Vector of 
(1, 4096)

P
ositional 

encoding

W
ord

em
bedding

One hot 
vector

Input to 
transformer 

blocks 

Transformers: Word Embedding
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Transformers: Positional Encoding
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● One thing that’s missing from the model as we have described it so far is a way to account for the order of 
the words in the input sequence.

● Transformer adds a vector to each input embedding. These vectors follow a specific pattern that the model 
learns, which helps it determine the position of each word.

● pos is the positional of the token, i is the index of the 
embedding.

Transformers: Positional Encoding
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Case Study: BERT
● Bidirectional Encoder Representations from Transformers.
● BERT is designed to understand the text by considering both the words before and after it.
● BERT consists of transformer encoders and takes the entire sentence as the input.
● BERT can not generate new text.

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint 
arXiv:1810.04805 (2018).
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Case Study: BERT

Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint 
arXiv:1810.04805 (2018).

● Use the encoder’s output embeddings as input features for downstream tasks.
● Represent a sentence as a vector for semantic similarity, clustering, or search.
● The pre-trained BERT model can be finetuned with just one additional output layer to create 

state-of-the-art models for a wide range of tasks.
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BERT
● A [CLS] token is inserted at the start of every sequence, and the two sentences in the 

sequence are separated by a [SEP] token.
● The final hidden state corresponding to this token is used as the aggregate sequence 

representation for classification tasks.
● In addition to the positional information, BERT contains a segment embeddings to 

differentiate the sentences.
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BERT Pretraining
● BERT is pretrained using two unsupervised tasks:

○ Masked Language Modeling (MLM)
■ We simply mask some percentage of the input tokens at random, and then 

predict those masked tokens.
○ Next Sentence Prediction (NSP)

■ Given two sentences, A and B, predict whether B is A’s following sentence.

“New York University is a great school.” “New York University is a great school.”

Bert

“University” 
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Linear

Downstream Tasks
● For text classification task, Bert will return a binary 

output.
○ Single sentence task (SST-2): The task is to predict the 

sentiment of a given sentence.
● The input may contain a single sentence, or a pair of 

sentences.
○ Similarity and Paraphrase tasks (MRPC): Is the second 

sentence a paraphrase of the first sentence.

...

(128, 768)

BERT 

Output

Input 

Block 1

Block 2

Block 12
Softmax
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BERT Performance

● BERT can achieve better performance over GLUE datasets than GPT-1.
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Efficient Self-Attention Design

Original Strided Fixed

Sparse Transformer (2019)

Beltagy, Iz, Matthew E. Peters, and Arman Cohan. "Longformer: The long-document transformer." arXiv preprint 
arXiv:2004.05150 (2020).

Longformer (2020)

Child, Rewon, et al. "Generating long sequences with sparse transformers." arXiv preprint arXiv:1904.10509 (2019).
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Efficient Self-Attention Design
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Linear

Token Merging

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).

“This show is great”

“This show is great”

Pooling layer will 
reduce the number 
of tokens.

● We can reduce the number of tokens by merging them together.

Feedforward 
layer (FFN)
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Block N
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Token Merging

Bolya, Daniel, et al. "Token merging: Your vit but faster." arXiv preprint arXiv:2210.09461 (2022).

Max 
pooling zi = 

xi   if (|xi| >= |yi|)
yi   otherwisex y z

Average
poolingx

y z
zi = (xi + yi)/2  

Interleaved
mergingx

y z
zi = 

xi   i is odd

yi   otherwise

● x,y are two token 
vectors with length of E
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Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning
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Vision Transformer
● Transformer architecture can also be applied over the computer vision tasks.

224

224

    Conv 2D

3

Reshape
(B, 768, 14, 14)

(B, 196, 768)

Concat

(B, 197, 768)

(B, 197, 768)

+(B, 197, 768)
nn.param

layernorm

take [ :, 0]

(B, 197, 768)

(B, 768)

(B, 1000)

(B, 197, 768)

Linear

(B, 197, 768)

Block

Block

(B, 197, 768)

…
(part 1) (part 2) (part 3)
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Vision Transformer
● A special placeholder is introduced to aggregate global information about the whole image.

224

224

    Conv 2D

3

Reshape
(B, 768, 14, 14)

(B, 196, 768)

Concat

(B, 197, 768)

(B, 197, 768)

+(B, 197, 768)
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...

FiltersInput Feature 
maps

Conv
Conv
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16
16

3

224

224

3

768

...

Output Feature 
maps

14

768
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(B, 1, 768)
Special token

Padding = 0, stride = 16
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Vision Transformer
● Transformer architecture can also be applied over the computer vision tasks.

...

FiltersInput Feature 
maps

Conv
Conv

Conv

16
16

3

224

224

3

768

...

Output Feature 
maps

14

768

14

Padding = 0, stride = 16
768

196

16
16

224

224

16
16

…
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Vision Transformer
● An image C×H×W is divided into patches of C×P×P. P is 16✖16 in the previous example.
● They are then flattened and linearly projected to E (e.g., 768) dimensions for a sequence of (H/P) × (W/P) 

tokens.

Dosovitskiy, Alexey. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint 
arXiv:2010.11929 (2020).

● A classification 
[CLS] token is 
inserted at the start 
of the tokens.

768

196

1
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Vision Transformer

ResNet-50
ResNet-50

23M
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Vision Transformer
● Accuracy increases as the training 

dataset grow.
● ResNet 50 can achieves an accuracy 

between 75-80% on ImageNet.
● ViT does not strike an efficient 

balance between parameter count 
and accuracy when dataset is small.
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Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning
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Large Language Models (LLMs)
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Transformers as a Generative AI Tool

Transformer

“Where is new york 
university?”

Processing Transformer

“New”

Transformer

“Where is 
new york 

university?”

“York”

“Where is 
new york 

university?”

Generating

Step 1: Prefilling Step 2: Decoding
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Decoder 12

Decoder 1

Decoder 2

Decoder 3

…

FFN

SA

LLM

ML

LLM LLM

is

LLM

awesome <EOS>

awesomeML is<BOS>
Round 1 Round 2 Round 3 Round 4

● Each token is generated in an autoregressive manner.

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.

Transformers as a Generative AI Tool
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FFN

Decoder

Decoder

Linear &
Softmax

Embedding

Normalization

Normalization

SA

Input
linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

● We need to buffer the v and k for later usage.

Transformers as a Generative AI Tool
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GPT-2: Prefilling

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”
● During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the 

KV vectors into the memory.

ki,j Key vector for ith token in jth layer

vi,j Value vector for ith token in jth layer

(1✕E)

(1✕E
)

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2

KV cache
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GPT-2: Decoding

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”

KV cache

● During the decoding stage, LLM generates the responses in an autoregressive way.

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2
Decoder

Decoder

Linear &
Softmax

Embedding

I

Round 1

KV cache

I

“How are you”
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GPT-2: Decoding

Decoder

Decoder

Linear &
Softmax

Embedding

am

Round 1

KV cache

I

“How are you I”

am

Decoder

Decoder

Linear &
Softmax

Embedding

doing

Round 2

KV cache

I

“How are you I am”

am
doing

Decoder

Decoder

Linear &
Softmax

Embedding

well

Round 3

KV cache

I

“How are you I am doing”

am
doing
well



58

GPT-2: Decoding

● We can simply select the token with the highest score. But better results are achieved if 
the model considers other words as well. So a better strategy is to sample a word from 
the entire list using the score as the probability of selecting that word.

Decoder

Decoder

Linear &
Softmax

Embedding

good

KV cache

I

“How are you I am doing”

am
doing
good

Decoder

Decoder

Linear &
Softmax

Embedding

well

KV cache

I

“How are you I am doing”

am
doing
well
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Why KV Cache Saves Computation?

● During the decoding phase, new tokens are continuously generated and must be 
processed using the buffered K and V vectors to generate subsequent tokens.

● Without a KV cache, all previous K and V vectors must be recomputed, resulting in 
significant computational overhead.

Q

E
1

KT

L-1 1

✖

q

L

A L,l

L-
1

L AE
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Why KV Cache Saves Computation?

WQ

qL vLk L

● Given the input, the qL, kL, vL are first computed by passing through the 
linear layers.

● After that, the kl, vl vectors (l=1,...,L-1) are also loaded from the memory.

WK WV
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● K and V are loaded from the memory, the q vector of the current token (qL) is multiplied 
with the each of the key vector ki, (i=1…L) to produce the result AL,i
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● K and V are loaded from the memory, the q vector of the current token (qL) is multiplied 
with the each of the key vector ki, (i=1…L) to produce the result AL,i
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● K and V are loaded from the memory, the q vector of the current token (qL) is multiplied 
with the each of the key vector ki, (i=1…L) to produce the result AL,i
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Why KV Cache Saves Computation?

L

A L,1

L A

● Afterwards, the computed AL,i (i=1…L) will then passed to softmax function.
● Then each element of AL will then multiplied with vi (i=1…L) and elementwise sum together.
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Why KV Cache Saves Computation?

L
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L A

● Afterwards, the computed AL,i (i=1…L) will then passed to softmax function
● Then each element of AL will then multiplied with vi (i=1…L) and elementwise sum together.
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Why KV Cache Saves Computation?
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● Afterwards, the computed AL,i (i=1…L) will then passed to softmax function
● Then each element of AL will then multiplied with vi (i=1…L) and elementwise sum together.

+
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Deepseek V3

Liu, Aixin, et al. "Deepseek-v3 technical report." arXiv preprint arXiv:2412.19437 (2024).
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LLaMA
● LLaMA has a similar architecture as 

GPT-2, with some minor differences:
○ RMSNorm is used to replace 

LayerNorm
○ SwiGLU
○ MLPs with gating

Touvron, Hugo, et al. "Llama: Open and efficient foundation language models." 
arXiv preprint arXiv:2302.13971 (2023).
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MLPs with Gating

Liu, Hanxiao, et al. "Pay attention to mlps." Advances in neural information processing systems 34 (2021): 9204-9215.

● A lot of LLM models applies gated feed-forward network to replace the conventional FFN in the 
transformer.
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How LLM is Trained?
● The loss function consists of two parts: 

“A newspaper article should contain these five main components: a headline, a byline, a lead/lede 
paragraph, an explanation, and any other additional information.”

A newspaper article should contain these five main xxx “components”

A newspaper article should xxx these five main components: a 
headline, a byline, a lead/lede paragraph, an explanation, and 
any other additional information.

“contain”

(GPT)

(BERT)

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint 
arXiv:1810.04805 (2018).
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How LLM is Trained?

Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
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Vision Language Model

Im
ageTe

xt “Describe 
the image”

Visual 
Encoder

Embedding
Projection

Language
model

“An image of two 
golden retrievers”

● A Vision-Language Model (VLM) is an large model 
that jointly processes from visual data (e.g., images, 
video) and textual data to understand, align, and 
generate multimodal content.
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Fusion ● In Llava, the visual encoder takes 
the input images and produced 
the visual embeddings.

 

● The visual embeddings and 
textual embeddings are 
concatenated, which is then 
forwarded to the fusion model.

Liu, Haotian, et al. "Visual instruction tuning." Advances in neural information processing systems 36 (2023): 34892-34916.
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Topics
● Transformer basics
● Bert
● Vision transformer
● Large Language Model
● Self-supervised learning for visual model



75

Self-Supervised Learning
● Self-Supervised Learning (SSL) is a paradigm that leverages intrinsic structures within 

unlabeled data to create pretext tasks, enabling models to learn meaningful 
representations that can be fine-tuned for downstream applications.
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Self-Supervised Learning
● Self-Supervised Learning (SSL) is a paradigm that leverages intrinsic structures within 

unlabeled data to create pretext tasks, enabling models to learn meaningful 
representations that can be fine-tuned for downstream applications.
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Popular SSL Methods: Contrastive Learning
● Contrastive Learning is a framework in which models learn meaningful representations by 

contrasting positive pairs (similar data points) with negative pairs (dissimilar data points), 
encouraging the embedding space to capture semantic similarities and differences.

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on 
machine learning. PMLR, 2020.
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Popular SSL Methods: Contrastive Learning

● The current augmentation approaches adopted by the AI community including random crop (with flip and 
resize), color distortion, and Gaussian blur. 
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Momentum Contrast SSL (MoCo)

He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2020.

● In the training process, only query encoder is updated, momentum encoder doesn’t change.

● Only the encoder is updated.
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Knowledge Distillation with No Labels (DINO)

DINO (2021)

● During the backpropagation, only the student DNN is updated.
● The teacher updates its weight periodically using the following formula:
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Masked AutoEncoder (MAE)
● The input image is masked, the 

unmasked image patches will be 
sent to the encoder.

● The decoder will infer the 
masked portion of the image.

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 2022.
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Self-Supervised Learning: Masked Autoencoder

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 2022.
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Assran, Mahmoud, et al. "Self-supervised learning from images with a joint-embedding predictive architecture." 
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.


